[1]D Bates, J M White, J Bezanson, S Karpinski, V B Shah, and other contributors. Distributions. 2014. julia software package. URL:
[2]J Bezanson, S Karpinski, V B Shah, and A Edelman. Julia: a fast dynamic language for technical computing. arXiv:1209.5145 [cs.PL], 2012. URL:
[3]J Bezanson, S Karpinski, V B Shah, and other contributors. The Julia Language. 2014. URL:
[4]D Birkes and Y Dodge, editors. Alternative Methods of Regression. Wiley, New York, 1993.
[5]R D Boch and M Lieberman. Fitting a response model for n dichotomously scored items. Psychometrika, 35:179–197, 1970.
[6]J K Bowmaker, G H Jacobs, D J Spiegelhalter, and J D Mollon. Two types of trichromatic squirrel monkey share a pigment in the red-green region. Vision Research, 25:1937–1946, 1985.
[7]G E Box and G C Tiao, editors. Bayesian Inference in Statistical Analysis. Addison Wesley, Reading, MA, 1973.
[8]N E Breslow. Extra-Poisson variation in log-linear models. Applied Statistics, 33:38–44, 1984.
[9]N E Breslow and D G Clayton. Approximate inference in generalized linear mixed models. Journal of the American Statistical Association, 88:9–25, 1993.
[10]S Brooks and A Gelman. General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7(4):434–455, 1998.
[11]S Brooks, A Gelman, G L Jones, and X-L Meng, editors. Handbook of Markov Chain Monte Carlo. Chapman & Hall/CRC, Boca Raton, FL, 2011.
[12]K A Brownlee, editor. Statistical Theory and Methodology in Science and Engineering. Wiley, New York, 1965.
[13]J B Carlin. Meta-analysis for 2 x 2 tables: a Bayesian approach. Statistics in Medicine, 11:141–159, 1992.
[14]M-H Chen and Q-M Shao. Monte Carlo estimation of Bayesian credible and HPD intervals. Journal of Computational and Graphical Statistics, 8(1):69–92, 1999.
[15]D Clayton. Bayesian analysis of frailty models. Technical Report, Medical Research Council Biostatistics Unit, Cambridge, 1994.
[16]M K Cowles and B P Carlin. Markov chain Monte Carlo convergence diagnostics: a comparative review. Journal of the American Statistical Association, 91:883–904, 1996.
[17]M Crowder. Beta-Binomial ANOVA for proportions. Applied Statistics, 27:34–37, 1978.
[18]O L Davies. Statistical Methods in Research and Production. Olver & Boyd, Edinburgh and London, 1967.
[19]P Dellaportas and A F M Smith. Bayesian inference for generalized linear and proportional hazards model via Gibbs sampling. Applied Statistics, 42:443–460, 1993.
[20]R C Elston and J E Grizzle. Estimation of time-response curves and their confidence bounds. Biometrics, 18:148–159, 1962.
[21]F Ezzet and J Whitehead. A random effects model for ordinal responses from a crossover trial. Statistics in Medicine, 10:901–907, 1993.
[22]Keno Fischer and other contributors. GraphViz. 2014. julia software package. URL:
[23]E Frierich and E Gehan. The effect of 6-mercaptopurine on the duration of steroid-induced remissions in acute leukaemia: a model for evaluation of other potentially useful therapy. Blood, 21:699–716, 1963.
[24]D Gamerman. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference. Chapman & Hall/CRC, Boca Raton, FL, 1997.
[25]A E Gelfand, S Hills, A Racine-Poon, and A F M Smith. Illustration of Bayesian inference in normal data models using Gibbs sampling. Journal of the American Statistical Association, 85:972–985, 1990.
[26]A E Gelfand and A F M Smith. Sampling based approaches to calculating marginal densities. Journal of the American Statistical Association, 85:398–409, 1990.
[27]A Gelman, J B Carlin, H S Stern, D B Dunson, A V Vehtari, and Rubin D B. Bayesian Data Analysis: Third Edition. CRC Press, 2013.
[28]A Gelman, G O Roberts, and W R Gilks. Efficient Metropolis jumping rules. Bayesian Statistics, 5:599–607, 1996.
[29]A Gelman and D B Rubin. Inference from iterative simulation using multiple sequences. Statistical Science, 7:457–511, 1992.
[30]A Gelman, Y-S Su, M Yajima, J Hill, M G Pittau, J Kerman, T Zheng, and V Dorie. arm: Data Analysis Using Regression and Multilevel/Hierarchical Models. 2014. R software package. URL:
[31]S Geman and D Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6):721–741, 1984.
[32]E I George, U E Makov, and A F M Smith. Conjugate likelihood distributions. Scandinavian Journal of Statistics, 20:147–156, 1993.
[33]J Geweke. Bayesian Statistics., chapter Evaluating the Accuracy of Sampling-Based Approaches to Calculating Posterior Moments. volume 4. Oxford University Press, New York, 1992.
[34]C J Geyer. Practical Markov chain Monte Carlo. Statistical Science, 7:473–511, 1992.
[35]W R Gilks, S Richardson, and D J Spiegelhalter, editors. Monte Carlo in Practice. Chapman & Hall/CRC, Boca Raton, FL, 1996.
[36]P W Glynn and W Whitt. Estimating the asymptotic variance with batch means. Operations Research Letters, 10:431–435, 1991.
[37]A P Grieve. Applications of Bayesian software: two examples. Statistician, 36:283–288, 1987.
[38]OpenBUGS Project Management Group. OpenBUGS Examples Volume I. 2014. version 3.2.3. URL:
[39]H Haario, E Saksman, and J Tamminen. An adaptive Metropolis algorithm. Bernoulli, 7:223–242, 2001.
[40]W K Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1):97–109, 1970.
[41]P Heidelberger and P Welch. Simulation run length control in the presence of an initial transient. Operations Research, 31:1109–1144, 1983.
[42]M D Hoffman and A Gelman. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15:1593–1623, 2014. URL:
[43]Steven G Johnson, Fernando Perez, Jeff Bezanson, Stefan Karpinski, Keno Fischer, and other contributors. IJulia. 2015. julia software package. URL:
[44]D C Jones. Gadfly. 2014. julia software package. URL:
[45]J G Kalbfleisch. Probability and Statistical Inference: Volume 2. Springer-Verlag, New York, 1985.
[46]D Lin, S Byrne, A N Jensen, D Bates, J M White, S Kornblith, and other contributors. StatsBase. 2014. julia software package. URL:
[47]D V Lindley and A F M Smith. Bayes estimates for the linear model (with discussion). Journal of the Royal Statistical Society: Series B, 34:1–44, 1972.
[48]D Lunn, D Spiegelhalter, A Thomas, and N Best. The BUGS project: evolution, critique and future directions. Statistics in Medicine, 28(25):3049–3067, 2009.
[49]A D Martin, K M Quinn, and J H Park. MCMCpack: Markov Chain Monte Carlo (MCMC) Package. 2013. R software package. URL:
[50]C McGilchrist and C Aisbett. Regression with frailty in survival analysis. Biometrics, 47:461–466, 1991.
[51]N Metropolis, A W Rosenbluth, M N Rosenbluth, A H Teller, and E Teller. Equations of state calculations by fast computing machines. Journal of Chemical Physics, 21(6):1087–1092, 1953.
[52]R M Neal. Slice sampling (with discussion). Annals of Statistics, 31:705–767, 2003.
[53]R M Neal. Handbook of Markov Chain Monte Carlo., chapter MCMC Using Hamiltonian Dynamics, pages 113–162. CRC Press, 2011.
[54]R M Neal. GRIMS – general R interface for Markov sampling. 2012. [Online; accessed 5-March-2014]. URL:
[55]J H Park. CRAN Task View: Bayesian Inference. 2014. version 2014-05-16. URL:
[56]A Patil, D Huard, and C J Fonnesbeck. PyMC: Bayesian stochastic modelling in Python. Journal of Statistical Software, 35(4):1–81, 2010.
[57]M Plummer. JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003). Vienna, Austria, March 20–22 2003. ISSN 1609-395X.
[58]M Plummer, N Best, K Cowles, and K Vines. CODA: convergence diagnosis and output analysis for MCMC. R News, 6(1):7–11, 2006.
[59]M Plummer, N Best, K Cowles, K Vines, D Sarkar, and R Almond. coda: Output Analysis and Diagnostics for MCMC. 2012. R software package. URL:
[60]A L Raftery and S Lewis. Comment: One long run with diagnostics: implementation strategies for Markov chain Monte Carlo. Statistical Science, 7(4):493–497, 1992.
[61]A L Raftery and S Lewis. Bayesian Statistics., chapter How Many Iterations in the Gibbs Sampler? volume 4. Oxford University Press, New York, 1992.
[62]C Robert. Markov chain Monte Carlo in practice., chapter Mixtures of distributions: inference and estimation. Chapman & Hall, 1994.
[63]C Robert and G Casella. Monte Carlo Statistical Methods. Springer, New York, 2nd edition, 2004.
[64]G O Roberts and J S Rosenthal. Examples of adaptive MCMC. Journal of Computational and Graphical Statistics, 18(2):349–367, 2009.
[65]A F Roche, H Wainer, and D Thissen. Skeletal maturity: The knee joint as a biological indicator. Plenum, New York, 1975.
[66]B J Smith. boa: an R package for MCMC output convergence assessment and posterior inference. Journal of Statistical Computing, 21(11):1–37, 2007.
[67]B J Smith. boa: Bayesian Output Analysis Program for MCMC. 2008. R software package. URL:
[68]B J Smith and other contributors. Mamba: Markov Chain Monte Carlo for Bayesian Analysis in julia. 2014. julia software package. URL:
[69]D Spiegelhalter, A Thomas, N Best, and W Gilks. BUGS 0.5 Bayesian Inference Using Gibbs Sampling Manual (version ii). MRC Biostatistics Unit, Institute of Public Health, Cambridge, UK, August 1996.
[70]D J Spiegelhalter, N G Best, B P Carlin, and A van der Linde. Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B, 64(4):583–639, 2002.
[71]P F Thall and S C Vail. Some covariance models for longitudinal count data with overdispersion. Biometrics, 46:657–671, 1990.
[72]D Thissen. MULITLOG Version 5: User’s Guide. Scientific Software, Mooresville, IN, 5th edition, 1986.
[73]A Thomas. OpenBUGS Developer Manual. March 2014. version 3.2.3. URL:
[74]L Tierney. Markov chains for exploring posterior distributions (with discussion). Annals of Statistics, 22:1701–1762, 1994.
[75]D Wabersich and J Vandekerckhove. Extending JAGS: a tutorial on adding custom distributions to JAGS (with a diffusion model example). Behavior Research Methods, 2013. DOI 10.3758/s13428-013-0369-3.
[76]J M White and other contributors. Calculus. 2014. julia software package. URL:
[77]J M White and other contributors. Graphs. 2014. julia software package. URL:
[78]Stan Development Team. Stan: a C++ library for probability and sampling. 2014. URL:
[79]Statisticat, LLC. LaplacesDemon: Complete Environment for Bayesian Inference. 2014. R software package. URL: